Radial kernels and their reproducing kernel Hilbert spaces
نویسندگان
چکیده
منابع مشابه
Radial kernels and their reproducing kernel Hilbert spaces
We describe how to use Schoenberg’s theorem for a radial kernel combined with existing bounds on the approximation error functions for Gaussian kernels to obtain a bound on the approximation error function for the radial kernel. The result is applied to the exponential kernel and Student’s kernel. To establish these results we develop a general theory regarding mixtures of kernels. We analyze t...
متن کاملReal reproducing kernel Hilbert spaces
P (α) = C(α, F (x, y)) = αF (x, x) + 2αF (x, y) + F (x, y)F (y, y), which is ≥ 0. In the case F (x, x) = 0, the fact that P ≥ 0 implies that F (x, y) = 0. In the case F (x, y) 6= 0, P (α) is a quadratic polynomial and because P ≥ 0 it follows that the discriminant of P is ≤ 0: 4F (x, y) − 4 · F (x, x) · F (x, y)F (y, y) ≤ 0. That is, F (x, y) ≤ F (x, y)F (x, x)F (y, y), and this implies that F ...
متن کاملSome Properties of Reproducing Kernel Banach and Hilbert Spaces
This paper is devoted to the study of reproducing kernel Hilbert spaces. We focus on multipliers of reproducing kernel Banach and Hilbert spaces. In particular, we try to extend this concept and prove some related theorems. Moreover, we focus on reproducing kernels in vector-valued reproducing kernel Hilbert spaces. In particular, we extend reproducing kernels to relative reproducing kernels an...
متن کاملReproducing kernel Hilbert spaces and Mercer theorem
We characterize the reproducing kernel Hilbert spaces whose elements are p-integrable functions in terms of the boundedness of the integral operator whose kernel is the reproducing kernel. Moreover, for p = 2 we show that the spectral decomposition of this integral operator gives a complete description of the reproducing kernel.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Complexity
سال: 2010
ISSN: 0885-064X
DOI: 10.1016/j.jco.2010.03.002